1,745 research outputs found

    Coanalysis of GWAS with eQTLs reveals disease-tissue associations.

    Get PDF
    Expression quantitative trait loci (eQTL), or genetic variants associated with changes in gene expression, have the potential to assist in interpreting results of genome-wide association studies (GWAS). eQTLs also have varying degrees of tissue specificity. By correlating the statistical significance of eQTLs mapped in various tissue types to their odds ratios reported in a large GWAS by the Wellcome Trust Case Control Consortium (WTCCC), we discovered that there is a significant association between diseases studied genetically and their relevant tissues. This suggests that eQTL data sets can be used to determine tissues that play a role in the pathogenesis of a disease, thereby highlighting these tissue types for further post-GWAS functional studies

    Gene-network inference by message passing

    Full text link
    The inference of gene-regulatory processes from gene-expression data belongs to the major challenges of computational systems biology. Here we address the problem from a statistical-physics perspective and develop a message-passing algorithm which is able to infer sparse, directed and combinatorial regulatory mechanisms. Using the replica technique, the algorithmic performance can be characterized analytically for artificially generated data. The algorithm is applied to genome-wide expression data of baker's yeast under various environmental conditions. We find clear cases of combinatorial control, and enrichment in common functional annotations of regulated genes and their regulators.Comment: Proc. of International Workshop on Statistical-Mechanical Informatics 2007, Kyot

    Gene-network inference by message passing

    Full text link
    The inference of gene-regulatory processes from gene-expression data belongs to the major challenges of computational systems biology. Here we address the problem from a statistical-physics perspective and develop a message-passing algorithm which is able to infer sparse, directed and combinatorial regulatory mechanisms. Using the replica technique, the algorithmic performance can be characterized analytically for artificially generated data. The algorithm is applied to genome-wide expression data of baker's yeast under various environmental conditions. We find clear cases of combinatorial control, and enrichment in common functional annotations of regulated genes and their regulators.Comment: Proc. of International Workshop on Statistical-Mechanical Informatics 2007, Kyot

    Gene-network inference by message passing

    Full text link
    The inference of gene-regulatory processes from gene-expression data belongs to the major challenges of computational systems biology. Here we address the problem from a statistical-physics perspective and develop a message-passing algorithm which is able to infer sparse, directed and combinatorial regulatory mechanisms. Using the replica technique, the algorithmic performance can be characterized analytically for artificially generated data. The algorithm is applied to genome-wide expression data of baker's yeast under various environmental conditions. We find clear cases of combinatorial control, and enrichment in common functional annotations of regulated genes and their regulators.Comment: Proc. of International Workshop on Statistical-Mechanical Informatics 2007, Kyot

    341: Allogeneic Antibodies Specifically Target AML Antigen NuSAP1 after Bone Marrow Transplantation

    Get PDF

    Likelihood ratios for genome medicine

    Get PDF
    Patients are beginning to present to healthcare providers with the results of high-throughput individualized genotyping, and interpreting these results in the context of the explosive growth of literature linking individual variants with disease may seem daunting. However, we suggest that results of a personal genomic analysis may be viewed as a panel of many tests for multiple diseases. By using well-established methods of evidence based medicine, these very many parallel tests may be combined using likelihood ratios to report a post-test probability of disease for use in patient assessment

    Random matrix analysis of localization properties of Gene co-expression network

    Get PDF
    We analyze gene co-expression network under the random matrix theory framework. The nearest neighbor spacing distribution of the adjacency matrix of this network follows Gaussian orthogonal statistics of random matrix theory (RMT). Spectral rigidity test follows random matrix prediction for a certain range, and deviates after wards. Eigenvector analysis of the network using inverse participation ratio (IPR) suggests that the statistics of bulk of the eigenvalues of network is consistent with those of the real symmetric random matrix, whereas few eigenvalues are localized. Based on these IPR calculations, we can divide eigenvalues in three sets; (A) The non-degenerate part that follows RMT. (B) The non-degenerate part, at both ends and at intermediate eigenvalues, which deviate from RMT and expected to contain information about {\it important nodes} in the network. (C) The degenerate part with zerozero eigenvalue, which fluctuates around RMT predicted value. We identify nodes corresponding to the dominant modes of the corresponding eigenvectors and analyze their structural properties
    corecore